Given the 3 'altitudes' of a Triangle: find its (1) sides, (2) angles, (3) area.
Calling the given altitudes ‘α,β,γ’ and the fraction
| 2α²β²γ² · (α² + β² + γ²) − (β4γ4 + γ4α4 + α4β4) |
| 4α4β4γ4 |
(1) α =
| 1 |
| kα |
(2) sin A = kβγ, &c.;
(3) area =
| 1 |
| k² |
Call given altitudes ‘α,β,γ’.
Now aα = bβ = cγ
∴ α sin A = β sin B = γ sin C;
∴
| sin A |
| βγ |
| sin B |
| γα |
| sin C |
| αβ |
∴ sin A = kβγ, sin B = kγα, sin C = kαβ.
Now sin (A + B) = sin C;
∴ sin A cos B + cos A sin B = sin C;
∴ sin A cos B = sin C − cos A sin B;
∴ sin² A(1 − sin²B) = sin² C + sin² B(1 − sin² A) − 2 sin C cos A sin B;
∴ sin² A − sin² A sin²B = sin² C + sin² B − sin² A sin² B − 2 sin B sin C cos A;
∴ sin² A − sin² B − sin² C = −2 sin B sin C cos A;
∴, squaring, (sin 4 A + &c.) − 2 sin² A sin² B − 2 sin² A sin² C + 2 sin² B sin² C = 4 sin² B sin² C(1 − sin² A);
(sin 4 A + &c.) − 2(sin² B sin² C &c.) + 4 sin² A sin² B sin² C = 0;
∴, substituting for sin A, &c., and dividing by k4,
(β4γ4 + &c.) − 2α²β²γ² · (α² &c.) + 4k²α4β4γ4 = 0;
∴ k² =
| 2α²β²γ² · (α² + β² + γ²) − (β4γ4 + γ4α4 + α4β4) |
| 4α4β4γ4 |
Now sin A = kβγ, &c.; which answers (2).
Also α = b sin C; and similarly γ = α sin B;
∴ α =
| γ |
| sin B |
| γ |
| kγα |
| 1 |
| kα |
Also area =
| bc sin A |
| 2 |
| 1 |
| kβ |
| 1 |
| kγ |
| 1 |
| 2k |
Q.E.