The following is as given in
Sir Thomas L. Heath's translation, which can be found in the book
The Thirteen Books of The Elements, Vol. 1.
Book I | Book II | Book IX |
---|---|---|
Definitions, Postulates, and Common Notions | Definitions | Proposition 20 |
Proposition 1, Proposition 3, | Proposition 14 | Proposition 36 |
Proposition 5, Proposition 6, | ||
Proposition 29, Proposition 47 |
On a given finite straight line to construct and equilateral triangle.
Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight line AB.
With centre A and distance AB let the circle BCD be described; [Post. 3]
again, with centre B and distance BA let the circle ACE be described; [Post. 3]
and from the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined.
[Post. 1]
Now, since the point A is the centre of the circle CDB,
Again, since the point B is the centre of the circle CAE,
But CA was also proved equal to AB;
therefore each of the straight lines CA, CB is equal to B.
And things which are equal to the same thing are also equal to one another; [C. N. 1]
Therefore the three straight lines CA, AB, BC are equal to one another.
Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight line AB.
(Being) what it was required to do.